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1. State of the art  

Understanding the ocean carbon cycle requires disentangling the pool of organic carbon associated 

with living phytoplankton cells from other types of carbon (e.g., zooplankton, detritus, fecal 

pellets). Phytoplankton carbon (C-phyto) is key to establish the carbon-to-chlorophyll (C-Chla) 

ratio and compute primary production (Behrenfeld et al., 2005; Sathyendranath et al., 2009), and 

assess the contribution of photophysiology in the phytoplankton seasonal cycle (Bellacicco et al., 

2016). It allows for determination of carbon-based growth and loss rates in phytoplankton (e.g., 

Sathyendranath et al., 2009; Zhai et al., 2010; Behrenfeld and Boss, 2014). C-phyto is also 

innovatively used to assess, at the sea-air interface, the export of organic matter towards the 

atmosphere in the form of aerosols (Fossum et al., 2018).  

To assess C-phyto from space is not a trivial task as the C-Chla ratio is influenced by both 

phytoplankton composition as well as by its photophysiological state. A number of algorithms 

have been developed to derive C-phyto from ocean color observations (see Bellacicco et al., 2020 

and reference therein). The approaches used by these algorithms can be grouped into: i) 

backscattering-based (e.g., Behrenfeld et al., 2005; Martinez-Vicente et al., 2013; Graff et al., 

2015); ii) Chla-based (e.g., Sathyendranath et al., 2009; Sathyendranath et al., 2020); and iii) size-

class-based (e.g., Kostadinov et al., 2016: Roy et al., 2017) approaches. Each approach relies on 

the covariation between optical properties or POC, and a proxy of phytoplankton concentration 

such as Chla, phytoplankton light absorption or size distribution. One of the largest challenges in 

retrieving C-phyto from ocean color observations is that the contributions of organic detritus, or 

non-algal particles (NAP), and living phytoplankton cells to the optical properties such as the 

particle backscattering and to the particle size distributions cannot easily be separated, particularly 

in turbid or coastal waters. It is assumed that phytoplankton dominates the backscattering signal 

in the open ocean (Dall’Olmo et al., 2009; Organelli et al., 2018), which is used in Case-1 water 

models (e.g., Morel and Maritorena, 2001) to approximate the NAP contribution from Chla. 

However, the variation of NAP horizontally, vertically, and temporally is considerable in many 

parts of the ocean both in units of optical contribution with respect to Chla (Bellacicco et al., 2019; 

Bellacicco et al., 2020) as well as in size and concentration (Organelli et al., 2020).  
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When considering the optical variability of NAP in space and time, C-phyto is best estimated with 

a relative error of 20% at the global scale (Bellacicco et al., 2020). However, all approaches to 

detect C-phyto are tremendously perfectible as soon as optics-to-carbon (e.g., Chla to C) 

conversion factors, global in situ C-phyto data coverage, and reduced uncertainties in satellite-

derived inputs of algorithms (i.e., backscattering, Chla, and particle size distribution) are better 

achieved. Currently, no method aims to expand the global estimation of C-phyto below the ocean 

surface where most of biogeochemical interactions occur. 

The following sections will describe the scientific challenges we face with respect to measuring 

and deriving phytoplankton carbon, gaps in data availability and methods to measure and derive 

phytoplankton carbon and the future opportunities we could utilise to fill these data gaps.  

 

2. Scientific challenges 

A number of scientific challenges exists for the derivation of C-phyto from bio-optical 

measurements, such as particle backscatter, when direct measurements of C-phyto are not 

available: 

I. Particle backscatter includes all particles, not just phytoplankton; the ability to separate 

living from non-living particles without microscopic or flow cytometric data is limiting. 

Moreover, the accuracy of backscattering retrievals from space must be increased. 

Application of a correction to remote sensing reflectances for the Raman scattering prior 

to semi-analytical retrievals has shown a way to follow (Pitarch et al., 2020). 

II. Chla, both satellite-derived and in situ, is often used in models to relate particle backscatter 

to C-phyto using empirical relationships. However, the uncertainties within these empirical 

relationships are increased by the influence of phytoplankton composition and 

physiological state of phytoplankton driving photoacclimation, i.e., the adjustment of Chla 

in response to light particularly in the surface ocean. In addition, at low phytoplankton 

biomass such as in the subtropical gyres, uncertainties both of satellite retrieved optical 

properties and Chla can be large. With all these challenges, we have not been able to 

develop standardized methods (models or algorithms) to derive C-phyto. 

III. We have a very limited understanding of C-phyto for the entire euphotic depth on global 

scale from observations.  

IV. Directly using satellite Chla or specific phytoplankton community Chla for evaluation or 

assimilation in (coupled-ocean-) biogeochemical models could more accurately derive C-

phyto since for these satellite products uncertainties are lower (IOCCG, 2020). But this 

requires further exploration.  

 

 

3. Method and data gaps 

In this section we will highlight the major existing method and data gaps that prohibit accurate 

retrievals of C-phyto: 

I. Gap of mechanistic understanding of how the optical properties link to C-phyto 

considering the diversity of phytoplankton composition and physiological state and other 

optically significant substances. 

II. Gap of accurate in situ C-phyto data: Undoubtedly the largest gap for deriving C-phyto 

from space is the paucity of global in situ phytoplankton community composition and C-

phyto data to develop and validate models and algorithms. One method exists to directly 

measure C-phyto, which entails the separation of living phytoplankton particles from non-
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living (detrital) particles and the subsequent elemental measurement of those particles. 

These direct measurements are largely biased towards nano and pico-sized phytoplankton 

particles detected by flow cytometry. C-phyto may also be indirectly ‘measured’ by 

applying empirical relationships that relate cell biovolume to C-phyto (Menden-Deuer and 

Lassard, 2000; Lomas et al. 2019). These empirical relationships are largely attributed to 

micro-sized phytoplankton (diatoms and dinoflagellates) and are limited to either a select 

number of laboratory cultures or a specific region in the global ocean.  

Coincident in situ observations of both phytoplankton community composition, by flow 

cytometry, microscopy or the more recent method of imaging-in-flow cytometry (e.g., 

Imaging Flow Cytobot, FlowCAM) with bio-optical and radiometric measurements are 

critical for establishing relationships between phytoplankton type, size, pigments and 

optical signatures. A limited number of field data sets (e.g., NASA’s EXPORTS campaign, 

the Atlantic Meridional Transect Programme (AMT)) contain these coincident 

measurements, but are regional driven, leading to a lack of understanding of their spatio-

temporal variability. Moreover, few measurements are taken below the surface ocean, 

assuming the satellite only sees the first few meters. 

 

III. Gap of consistent C-phyto surface time series data sets: so far C-phyto satellite data sets 

are experimental. Time series data sets with clear uncertainties are critical to understanding 

spatio-temporal variability in C-phyto, community composition and coincident optical 

properties. Existing time series studies that include these measurements are limited (e.g., 

Martha’s Vineyard Coastal observatory). 

 

IV. Gap of global C-phyto data below the surface ocean: Since satellite data only deliver 

information for the first optical depth, the collection of in situ C-phyto data has been largely 

limited to discrete water sampling at surface depths. Because the ocean color properties of 

the surface ocean may be influenced by particles and phytoplankton cells below the 

surface, it is imperative that we extend measurements deeper into the water column, 

encompassing the euphotic zone. This will bring also to a better estimation of C-phyto 

along the water column where most of biogeochemical interactions occur. 

 

V. Gap of synergistic methods that combines different data sets (e.g., satellite observations, 

in situ autonomous and ship-based observations) with different coverage in space and time 

for the entire euphotic zone.  Satellite data only provide information for the surface water 

often and it is challenging to extrapolate those ocean color properties for the entire euphotic 

zone.  

 

VI. Gap of uncertainties: Each method, model or algorithm possesses inherent uncertainties, 

either systematic or owing to the input data. Uncertainties are infrequently reported with 

these data. As such, there are gaps in our knowledge of the accuracy of our models and 

algorithms to derive C-phyto. This includes uncertainties in our direct or indirect 

measurements of in situ C-phyto. 
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4. Opportunity 

The method and data gaps described leave open many opportunities. Here we elaborate on few: 

I. The enlargement and exploration of data analysis of in situ super sites: These are sites 

were the different measurements taken ensure the “complete” coverage of linking the 

C-phyto to optical properties, considering the diversity and variation of phytoplankton 

and other optical constituents (should also enable frequent collocation to ocean color 

satellite data). The strategy is to empower existing observatories, often also used for 

water quality assessment, by connecting them with other research communities (e.g., 

phytoplankton taxonomy, flow cytometry). These super sites measurements could be 

complemented by dedicated mesocosm experiments that will help to improve the 

mechanistic understanding retrieved from the super sites. In addition, these data sets 

can be used to verify/develop the best protocol to derive reliable (clear uncertainties) 

in situ C-phyto data.  In situ C-phyto data then must be collected on global scale not 

only at surface but also through the euphotic zone. 

II. Long-time series C-phyto data usable for climate research should be developed by 

adapting algorithms to different ocean color sensor data covering different time spans 

(since 1997 until today) and with including pixel by pixel uncertainties. C-phyto 

satellite data algorithms may be improved by using the synergistic information on the 

abundance and composition of the different optical components (phytoplankton, NAP, 

CDOM). This opportunity should be explored since these data could provide an 

opportunity to lower the uncertainties in C-phyto retrievals.    

III. Accuracy of optical quantities used as input of C-phyto algorithms can be improved by 

empowering validation through autonomous mobile platforms such as 

Biogeochemical-Argo profiling floats and drifters (e.g., Boss et al., 2008; Sauzède et 

al., 2016; Bisson et al., 2019; Xing et al., 2020). These robotic platforms allow the 

acquisition of optical measurements with limited spatial and temporal bias, as they 

collect data also in remote regions during unfavorable meteorological conditions for 

ship-based sampling (Organelli et al., 2017). Optical data from these platforms have 

been used to derive bulk parameters, such as Kd, Chla, CDOM and POC and by this 

are a source for complementing satellite data beneath surface. Recently, it has been 

demonstrated that introducing hyperspectral instrumentation on these platforms 

enables resolved for the light-lit water column estimates on the composition (type and 

size) of optical constituents, especially phytoplankton (Chase et al. 2013, Liu et al. 

2019, Bracher et al. 2020, Jemai et al. 2021, Organelli et al. 2021). Efforts to enlarge 

the optical multiplatform data acquisition and development of protocol for the 

derivation of high-quality C-phyto data sets must be taken since these have the potential 

to fill the gap of C-phyto information below the first optical depth.  

IV. Autonomous platforms such as BGC-Argo floats (Claustre et al., 2020) or moorings 

(von Appen et al., 2021) also offer the opportunity to establish strong synergies with 

remote sensing of ocean colour to reconstruct, via artificial intelligence, the 4-

dimensional view of particulate organic carbon in open ocean. Such a synergy can be 

expanded towards reconstruction of the 4D view of C-phyto to better observe 

phytoplankton biomass dynamics and calculate primary production below the ocean 

surface.  
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